
CoNFET: An English Sentence To Emojis Translation
Algorithm

or
📄🗜➡😆

Alex Day, Chris Mankos,
Dr. Soo Kim, and Dr. Jody Strausser

Clarion University of Pennsylvania

Overview

● Introduction
○ Motivation
○ Related work

● Algorithm Overview
○ Sentence Compositions
○ Emoji Mapping
○ Translation Generation
○ Translation Scoring
○ Improvements

● Results
● Conclusion & Future Work

2

Motivation

● Is it possible to generate representative emoji sentences intelligently?
○ Not a complete one-to-one mapping of words to emojis
○ Capture ‘essence’ of several words

● Why is this important?
○ Pictograms are internationally recognizable
○ Possibility to improve the current computational “emoji understanding”

● Some examples of what we would like:

○ My dog can run so fast → 🐕🏃💨
○ I’m thinking that this computer has a virus → 🤔🖥🦠

3

Related Work

● Embeddings
○ Word2Vec
○ Sent2Vec
○ Emoji2Vec

● Direct word → emoji mappings
○ https://decodeemoji.com
○ https://meowni.ca/emoji-translate/

● Emoji Dick
○ Translation of Moby Dick into Emojis

● Similar works
○ An Approach for Text-to-Emoji Translation

4

http://computationalcreativity.net/iccc20/papers/167-iccc20.pdf

Composition of N-Grams for Emoji Translation
(CoNET)

● CoNET is a combination of machine learning and natural language processing (NLP) techniques that
can produce a series of emojis when given a variable length input sentence

● Algorithm is split into separate parts
1. Sentence compositions
2. N-Gram → emoji comparison
3. Translation scoring
4. Summary generation

5

High-Level Algorithm Architecture

6

High-Level Algorithm Architecture

7

Sentence Compositions

● An n-gram is a variable length sequence of contiguous words, normally in the context of a larger
phrase or sentence.

○ A sentence can be represented by a sequence of n-grams
○ Ex: The sentence “The dog bit me very hard” has the n-grams:

○ “The dog bit”, “me”, “very hard”
● We will refer to a sequence of n-grams as the n-gram sequence, and an individual n-gram in the

sequence as an n-gram
● The simplest way to partition a sentence is to do so exhaustively

○ Ex: For the sentence “The dog bit me very hard” we check all sequences of n-grams:

● Assumption: there must exist some optimal n-gram sequence that generates the best summary

8

High-Level Algorithm Architecture

9

N-Gram→ Emoji Comparison

● Need a way to translate an n-gram (eg. “the dog”) to an emoji (eg. 🐕) that is not just a one-to-one
mapping from word to emoji

● What is an emoji?
○ Just a mapping over a description:

■ 🐕 → Dog, Puppy, Beagle
■ 🌎→Earth, Home, North and South America

10

Embeddings Explained using Colors

● Colors can be mapped into three-dimensional space using a vector of 3 numbers representing red,
green, and blue

● Colors as specific points
○ Purple → [1, 0, 1]
○ Orange → [1, 0.5, 0]

● Adding colors together
○ Red + Blue = Purple
○ [1, 0, 0] + [0, 0, 1] = [1, 0, 1]

11

Embeddings Explained using Colors
Continued...

● We can also use this idea to compare points in the color space

● Similarity Metrics
○ Euclidean Distance is the line distance between two points (d)
○ Cosine Difference is 1 - the cosine of the measure of the angle from the origin between two

points (Θ)

● Determining color difference
○ cos(Purple, Orange) = 0.04
○ cos(Red, Blue) = 1

● Closest Vectors (Vectors with lowest difference)
○ closest(Red) = {Scarlet, Lipstick Red, …}

12

N-Gram→ Emoji Comparison Continued...

● Sent2Vec
○ Translates a sentence, phrase, or word into a 700-long vector with elements from -1 - 1
○ Embeds the semantic meaning of the sentence into a machine readable and representative

format

... 13

N-Gram→ Emoji Comparison Continued...

● Sent2Vec
○ Translates a sentence, phrase, or word into a 700-long vector with elements from -1 - 1
○ Embeds the semantic meaning of the sentence into a machine readable and representative

format

14

0.63223

0.16078

● To find the closest emoji to a vector the following function is executed:

● We can now query our dataset like this:

N-Gram→ Emoji Comparison Continued...

15💛

High-Level Algorithm Architecture

16

Translation Scoring

● We score a sentence based on the sum of its parts. Meaning that the sentence’s score as a whole is
an average of the cosine similarity of the n-gram → emoji pairs that make up that summary.

● 🐩🎽💨
○ N-grams → “the dog” “runs” “fast”
○ Emoji-grams → “dog” “run” “fast”
○ Cosine Similarity → 0.96, 1.0, 1.0
○ Average Cosine Similarity → 0.9844

● 💭💾🐛
○ N-grams → “i think that this” “computer” “has a virus”
○ Emoji-grams → “think” “computer” “virus”
○ Cosine Similarity → 0.52, 1.0, 0.79
○ Average Cosine Similarity → 0.77

17

Summary Generation

1. Given a sentence, S, to summarize
2. Split S into every possible n-gram sequence, call that list of sequences N
3. For every sequence in N:

a. For every n-gram in sequence
i. Find closest emoji and add that to the summary

b. Score sequence
4. Return sequence in N with highest score

18

Summary Generation

19

Drawbacks with this implementation

● Computationally expensive
○ Every word doubles the number of compositions to look at
○ 2n-1 total compositions to consider, where n is the sentence length

● Words are variably impactful
○ ‘The’, ‘a’, ‘but’, and other similar words

● Little to no context
○ 🐶🌭🐶

■ “A dog eats a treat while another dog watches.”
■ “A dog steals the food of the dog.”
■ “A dog shares his snack with a dog.”

20

Addressing the issues

● Computationally expensive
○ Don’t look at every possible combination
○ The natural parts of speech offer an intuitive approach to grouping a sentence

● Variable importance of words
○ Maybe if we could weigh the relative importance of words, we could more fairly score…?
○ Inspiration from the automatic text summarization techniques that we considered years ago

● Context
○ More important for human translators
○ Sentiment analysis - the feeling of a sentence - as an initial attempt

21

High-Level Algorithm Architecture

22

Tf-idf to high level considerations go here

Made a mistake and need to fix it. Fixing other end first before I write.

23

Algorithm Improvements

24

Dependency Tree Segment Generation

● Exhaustive splitting is
○ Naive
○ Computationally expensive
○ Suffers from reward hacking

● Sentences can be turned into a tree-like structure based on the syntactic dependencies.
● Given that tree we can collapse it down to produce the n-grams from all the remaining nodes:

1. If there is a node-to-node relationship with only one child we combine them
2. If there are two or more leafs on the same level we combine them

25

Dependency Trees

“I finished the homework just before the class started.”

26

27

Child Collapse

28

Child Collapse Continued...

29

Neighbor Collapse...

30

Neighbor Collapse Continued...

Dependency Tree Segment Generation
Continued...

31

High-Level Algorithm Architecture

32

Sentiment

● Initially, just a table
○ Score a sentence using TextBlob
○ Pull an emoji from a table

● Iteration 2:
○ Use twitter’s API to find tweets containing

each emoji
○ Run each tweet through TextBlob
○ Find the mean and standard deviation of each

emoji
○ Run the target sentence through TextBlob
○ Find the nearest emoji

😡 😐 😂

😟 😶 🙂

👎 ⚖ 👍

(Negative) Polarity (Positive)

(Opinion)

Subjectivity

(Fact)

-1 -0.33 0.33 1

1

0.66

0.33

0

33

Issues

● Dataset
○ Size (Twitter API rate limit)
○ Query structure issues

■ Searching for “U+1F62E” (😮)
■ Not always in tweet

○ Can only search so far back
■ 😷 results in many Hong-Kong related

tweets

34

Issues Continued

● Preprocessing is a different beast
○ “Current mood: ”
○ Spelling, punctuation

35

TextBlob conclusion

● More data
● Better preprocessing
● Maybe categorical data analysis combined with with a

better dataset (Kaggle)

36

Testing

● No easy quantitative way to score translations
○ BLEU score requires large dataset

● Human in the loop testing
○ Large variance in small sample size of responses
○ Large variance in what our emoji sentences can represent

● Stuck with judging translations ourselves

37

Results (Exhaustive Splitting)

38

Input Sentence Output Emojis Score

The dog runs fast 🐩🎽💨 0.984

The child was in love with the cat 👶😚🐾 0.824

They are playing christmas music from the bell
tower

🎴🎄🎻⏰🏰 0.893

I think that this computer has a virus 💭💾🐛 0.769

I have to wear my headphones to run in the race 🎩🎧🎽🏁 0.960

The company Apple makes both cell phones and
computers

🍏📱💾 0.903

Results (Smart Dependency Tree Splitting)

39

Input Sentence Output Emojis Score

The dog runs fast 🎽🐩 0.663

The child was in love with the cat 👶🚯🐾 0.629

They are playing christmas music from the bell tower 🚯🎴🎄🏰 0.706

I think that this computer has a virus 👤💭💯💾🐛 0.822

I have to wear my headphones to run in the race 👤🔬🚯🎩🎧🎽
🏁

0.668

The company Apple makes both cell phones and
computers

🍏🚯📞📱 0.590

Conclusion

● We presented a novel method of translation from English to emoji
● Translates some sentences well, but needs improvement in other areas
● A decent (as far as we can tell) first approach to this problem

40

Future Work

● Improved dataset
○ The dataset is the main influence on the “readability” of the generated summaries.
○ The dataset we have is aimed at word vectorization rather than sentence vectorization
○ A larger dataset could utilize deep learning techniques

● Each n-gram is currently independent of every other n-gram in the sequence
○ By checking before and ahead and using that to influence the decision it may lead to better

results. This is a proven technique used by Recurrent Neural Networks.
● Improve Testing Metrics

○ Translate emojis back into a sentence and calculate distance from the input sentence
● One n-gram can have multiple emojis all with the same similarity. We need some way of determining

the closest “closest” emoji.
○ Maybe by considering the emoji’s other keywords as well
○ Consider part-of-speech tagging emoji descriptions

41

Demo

42

emoji.alexday.me

Questions?
43

TF-IDF

● A way to score the relative importance of a word (term) in a given sentence (document)
● Two parts

○ TF -> Term Frequency: How often a word shows up in the document
■ Motivation: The more often a word shows up, the more important it is to the document
■ Number of times a word shows up in the document

○ IDF -> Inverse Document Frequency: How often a word shows up in all of the documents
■ Motivation: The more things a word shows up in, the less important it is to a single

document
■ log(|corpus|/term)

● TF-IDF(term, document, corpus) = TF(term, document) x IDF(term, corpus)

44

Estimating n-grams with TF-IDF

● TF-IDF typically considers individual words
● Sometimes trained on bigrams or trigrams, but not often much more than that

○ “New York” is common and meaningful, but 2 arbitrary words often aren’t
● If we can have a score for arbitrary n-grams, then we can consider weighted averages

○ Gensim is terrific for handling larger datasets, but we cannot consider anything other than
unigrams without jumping through some hoops

○ Estimate n-grams out of the constituent unigrams

45

Steps

● Find TF-IDF scores of each term in the document to translate
● When looking for the score of a larger n-gram, approximate it

○ Individual document frequencies can be multiplied together
to get an estimation of how often the words occur together

○ Can estimate how often the words occur in the given order
by using the input sentence as an estimation for average
sentence length

● Score each composition by multiplying the tf-idf weight of each
n-gram with the uncertainty score calculated by cosine difference

46

High level considerations

● Consider a bigram
○ Pool of ‘words’ to select from is much larger - would expect frequency of [AB] to be smaller

overall
■ Document frequency should be way down

○ Bigrams should score better
● Hugely variable based on training corpus

○ Some were sentences and others were full blown books
○ Assumptions made on word frequencies
○ “The dog runs fast”

■ I looked at datasets of SMS spam/ham, Jeopardy! questions, Canadian Parliament
transcriptions, and they heavily impacted the weights.

47

