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Motivation

● Is it possible to generate representative emoji sentences intelligently?
○ Not a complete one-to-one mapping of words to emojis
○ Capture ‘essence’ of several words

● Why is this important?
○ Pictograms are internationally recognizable
○ Possibility to improve the current computational “emoji understanding”

● Some examples of what we would like:

○  My dog can run so fast → 🐕🏃💨
○ I’m thinking that this computer has a virus → 🤔🖥🦠
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Related Work

● Embeddings
○ Word2Vec
○ Sent2Vec
○ Emoji2Vec

● Direct word → emoji mappings
○ https://decodeemoji.com
○ https://meowni.ca/emoji-translate/

● Emoji Dick
○ Translation of Moby Dick into Emojis

● Similar works
○ An Approach for Text-to-Emoji Translation
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Composition of N-Grams for Emoji Translation 
(CoNET)

● CoNET is a combination of machine learning and natural language processing (NLP) techniques that 
can produce a series of emojis when given a variable length input sentence

● Algorithm is split into separate parts
1. Sentence compositions
2. N-Gram → emoji comparison
3. Translation scoring
4. Summary generation
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High-Level Algorithm Architecture
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High-Level Algorithm Architecture
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Sentence Compositions

● An n-gram is a variable length sequence of contiguous words, normally in the context of a larger 
phrase or sentence.

○ A sentence can be represented by a sequence of n-grams
○ Ex: The sentence “The dog bit me very hard” has the n-grams:

○ “The dog bit”, “me”, “very hard”
● We will refer to a sequence of n-grams as the n-gram sequence, and an individual n-gram in the 

sequence as an n-gram
● The simplest way to partition a sentence is to do so exhaustively

○ Ex: For the sentence “The dog bit me very hard” we check all sequences of n-grams:

● Assumption: there must exist some optimal n-gram sequence that generates the best summary
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High-Level Algorithm Architecture
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N-Gram→ Emoji Comparison

● Need a way to translate an n-gram (eg. “the dog”) to an emoji (eg. 🐕) that is not just a one-to-one 
mapping from word to emoji

● What is an emoji?
○ Just a mapping over a description:

■ 🐕 → Dog, Puppy, Beagle
■ 🌎→Earth, Home, North and South America
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Embeddings Explained using Colors

● Colors can be mapped into three-dimensional space using a vector of 3 numbers representing red, 
green, and blue

● Colors as specific points
○ Purple → [1, 0, 1]
○ Orange → [1, 0.5, 0]

● Adding colors together
○ Red + Blue = Purple 
○ [1, 0, 0] + [0, 0, 1] = [1, 0, 1]
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Embeddings Explained using Colors 
Continued...

● We can also use this idea to compare points in the color space

● Similarity Metrics
○ Euclidean Distance is the line distance between two points (d)
○ Cosine Difference is 1 - the cosine of the measure of the angle from the origin between two 

points (Θ)

● Determining color difference
○ cos(Purple, Orange) = 0.04
○ cos(Red, Blue) = 1

● Closest Vectors (Vectors with lowest difference)
○ closest(Red) = {Scarlet, Lipstick Red, …}
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N-Gram→ Emoji Comparison Continued...

● Sent2Vec
○ Translates a sentence, phrase, or word into a 700-long vector with elements from -1 - 1
○ Embeds the semantic meaning of the sentence into a machine readable and representative 

format
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N-Gram→ Emoji Comparison Continued...

● Sent2Vec
○ Translates a sentence, phrase, or word into a 700-long vector with elements from -1 - 1
○ Embeds the semantic meaning of the sentence into a machine readable and representative 

format
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● To find the closest emoji to a vector the following function is executed:

● We can now query our dataset like this:

N-Gram→ Emoji Comparison Continued...

15💛 



High-Level Algorithm Architecture
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Translation Scoring

● We score a sentence based on the sum of its parts. Meaning that the sentence’s score as a whole is 
an average of the cosine similarity of the n-gram → emoji pairs that make up that summary.

● 🐩🎽💨
○ N-grams  → “the dog”  “runs”  “fast”
○ Emoji-grams → “dog” “run” “fast”
○ Cosine Similarity → 0.96, 1.0, 1.0
○ Average Cosine Similarity → 0.9844

● 💭💾🐛
○ N-grams → “i think that this”  “computer”  “has a virus”
○ Emoji-grams → “think” “computer” “virus”
○ Cosine Similarity → 0.52, 1.0, 0.79
○ Average Cosine Similarity → 0.77
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Summary Generation

1. Given a sentence, S, to summarize
2. Split S into every possible n-gram sequence, call that list of sequences N
3. For every sequence in N:

a. For every n-gram in sequence
i. Find closest emoji and add that to the summary

b. Score sequence
4. Return sequence in N with highest score
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Summary Generation
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Drawbacks with this implementation

● Computationally expensive
○ Every word doubles the number of compositions to look at
○ 2n-1 total compositions to consider, where n is the sentence length

● Words are variably impactful
○ ‘The’, ‘a’, ‘but’, and other similar words

● Little to no context
○ 🐶🌭🐶

■ “A dog eats a treat while another dog watches.”
■ “A dog steals the food of the dog.”
■ “A dog shares his snack with a dog.”
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Addressing the issues

● Computationally expensive
○ Don’t look at every possible combination
○ The natural parts of speech offer an intuitive approach to grouping a sentence

● Variable importance of words
○ Maybe if we could weigh the relative importance of words, we could more fairly score…?
○ Inspiration from the automatic text summarization techniques that we considered years ago

● Context
○ More important for human translators
○ Sentiment analysis - the feeling of a sentence - as an initial attempt
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High-Level Algorithm Architecture
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Tf-idf to high level considerations go here

Made a mistake and need to fix it. Fixing other end first before I write.
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Algorithm Improvements
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Dependency Tree Segment Generation

● Exhaustive splitting is
○ Naive
○ Computationally expensive
○ Suffers from reward hacking

● Sentences can be turned into a tree-like structure based on the syntactic dependencies.
● Given that tree we can collapse it down to produce the n-grams from all the remaining nodes:

1. If there is a node-to-node relationship with only one child we combine them
2. If there are two or more leafs on the same level we combine them
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Dependency Trees

“I finished the homework just before the class started.”
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Child Collapse
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Child Collapse Continued...
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Neighbor Collapse...
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Neighbor Collapse Continued...



Dependency Tree Segment Generation 
Continued...
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High-Level Algorithm Architecture
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Sentiment

● Initially, just a table
○ Score a sentence using TextBlob
○ Pull an emoji from a table

● Iteration 2:
○ Use twitter’s API to find tweets containing 

each emoji
○ Run each tweet through TextBlob
○ Find the mean and standard deviation of each 

emoji
○ Run the target sentence through TextBlob
○ Find the nearest emoji

😡 😐 😂

😟 😶 🙂

👎 ⚖ 👍

(Negative)        Polarity         (Positive)

(Opinion)

Subjectivity

(Fact)

-1 -0.33 0.33 1

1

0.66

0.33

0
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Issues

● Dataset
○ Size (Twitter API rate limit)
○ Query structure issues

■ Searching for “U+1F62E” (😮)
■ Not always in tweet

○ Can only search so far back
■ 😷 results in many Hong-Kong related 

tweets
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Issues Continued

● Preprocessing is a different beast
○ “Current mood: ”
○ Spelling, punctuation
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TextBlob conclusion

● More data
● Better preprocessing
● Maybe categorical data analysis combined with with a 

better dataset (Kaggle)
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Testing

●  No easy quantitative way to score translations
○ BLEU score requires large dataset

● Human in the loop testing
○ Large variance in small sample size of responses
○ Large variance in what our emoji sentences can represent

● Stuck with judging translations ourselves
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Results (Exhaustive Splitting)
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Input Sentence Output Emojis Score

The dog runs fast 🐩🎽💨 0.984

The child was in love with the cat 👶😚🐾 0.824

They are playing christmas music from the bell 
tower

🎴🎄🎻⏰🏰 0.893

I think that this computer has a virus 💭💾🐛 0.769

I have to wear my headphones to run in the race 🎩🎧🎽🏁 0.960

The company Apple makes both cell phones and 
computers

🍏📱💾 0.903



Results (Smart Dependency Tree Splitting)
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Input Sentence Output Emojis Score

The dog runs fast 🎽🐩 0.663

The child was in love with the cat 👶🚯🐾 0.629

They are playing christmas music from the bell tower 🚯🎴🎄🏰 0.706

I think that this computer has a virus 👤💭💯💾🐛 0.822

I have to wear my headphones to run in the race 👤🔬🚯🎩🎧🎽
🏁

0.668

The company Apple makes both cell phones and 
computers

🍏🚯📞📱 0.590



Conclusion

● We presented a novel method of translation from English to emoji
● Translates some sentences well, but needs improvement in other areas
● A decent (as far as we can tell) first approach to this problem
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Future Work

● Improved dataset
○ The dataset is the main influence on the “readability” of the generated summaries. 
○ The dataset we have is aimed at word vectorization rather than sentence vectorization
○ A larger dataset could utilize deep learning techniques

● Each n-gram is currently independent of every other n-gram in the sequence
○ By checking before and ahead and using that to influence the decision it may lead to better 

results. This is a proven technique used by Recurrent Neural Networks.
● Improve Testing Metrics

○ Translate emojis back into a sentence and calculate distance from the input sentence
● One n-gram can have multiple emojis all with the same similarity. We need some way of determining 

the closest “closest” emoji.
○ Maybe by considering the emoji’s other keywords as well
○ Consider part-of-speech tagging emoji descriptions
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Demo
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emoji.alexday.me



Questions?
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TF-IDF

● A way to score the relative importance of a word (term) in a given sentence (document)
● Two parts

○ TF -> Term Frequency: How often a word shows up in the document
■ Motivation: The more often a word shows up, the more important it is to the document
■ Number of times a word shows up in the document

○ IDF -> Inverse Document Frequency: How often a word shows up in all of the documents
■ Motivation: The more things a word shows up in, the less important it is to a single 

document
■ log(|corpus|/term)

● TF-IDF(term, document, corpus) = TF(term, document) x IDF(term, corpus)
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Estimating n-grams with TF-IDF

● TF-IDF typically considers individual words
● Sometimes trained on bigrams or trigrams, but not often much more than that

○ “New York” is common and meaningful, but 2 arbitrary words often aren’t
● If we can have a score for arbitrary n-grams, then we can consider weighted averages

○ Gensim is terrific for handling larger datasets, but we cannot consider anything other than 
unigrams without jumping through some hoops

○ Estimate n-grams out of the constituent unigrams
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Steps

● Find TF-IDF scores of each term in the document to translate
● When looking for the score of a larger n-gram, approximate it

○ Individual document frequencies can be multiplied together 
to get an estimation of how often the words occur together

○ Can estimate how often the words occur in the given order 
by using the input sentence as an estimation for average 
sentence length

● Score each composition by multiplying the tf-idf weight of each 
n-gram with the uncertainty score calculated by cosine difference
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High level considerations

● Consider a bigram
○ Pool of ‘words’ to select from is much larger - would expect frequency of [AB] to be smaller 

overall
■  Document frequency should be way down

○ Bigrams should score better 
● Hugely variable based on training corpus

○ Some were sentences and others were full blown books
○ Assumptions made on word frequencies
○ “The dog runs fast”

■ I looked at datasets of SMS spam/ham, Jeopardy! questions, Canadian Parliament 
transcriptions, and they heavily impacted the weights.
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