CoNFET: An English Sentence To Emojis Translation Algorithm

Alex Day, Chris Mankos, Dr. Soo Kim, and Dr. Jody Strausser

Clarion University of Pennsylvania

Overview

- Introduction
 - Motivation
 - Related work
- Algorithm Overview
 - Sentence Compositions
 - Emoji Mapping
 - Translation Generation
 - Translation Scoring
 - Improvements
- Results
- Conclusion & Future Work

Motivation

- Is it possible to generate representative emoji sentences intelligently?
 - Not a complete one-to-one mapping of words to emojis Ο
 - Capture 'essence' of several words \bigcirc
- Why is this important?
 - Pictograms are internationally recognizable Ο
 - Possibility to improve the current computational "emoji understanding" 0
- Some examples of what we would like:
 - My dog can run so fast \rightarrow 0
 - I'm thinking that this computer has a virus \rightarrow 🔁 💻 🦠 Ο

Related Work

- Embeddings
 - \circ Word2Vec
 - Sent2Vec
 - Emoji2Vec
- Direct word \rightarrow emoji mappings
 - https://decodeemoji.com
 - https://meowni.ca/emoji-translate/
- Emoji Dick
 - Translation of Moby Dick into Emojis
- Similar works
 - An Approach for Text-to-Emoji Translation

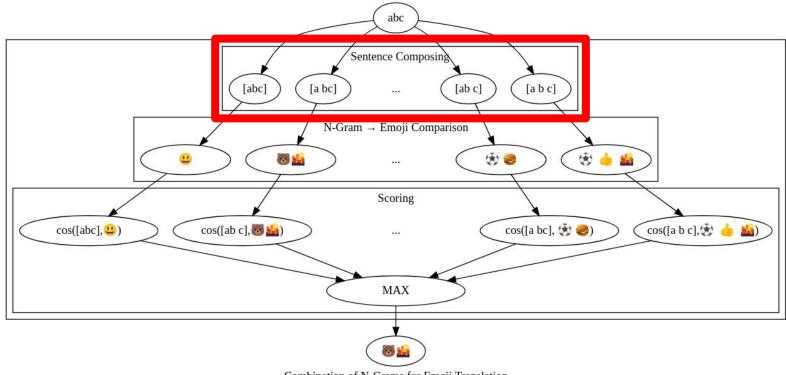
Composition of N–Grams for Emoji Translation (CoNET)

- CoNET is a combination of machine learning and natural language processing (NLP) techniques that can produce a series of emojis when given a variable length input sentence
- Algorithm is split into separate parts
 - 1. Sentence compositions
 - 2. N-Gram \rightarrow emoji comparison
 - 3. Translation scoring
 - 4. Summary generation

High-Level Algorithm Architecture



High-Level Algorithm Architecture



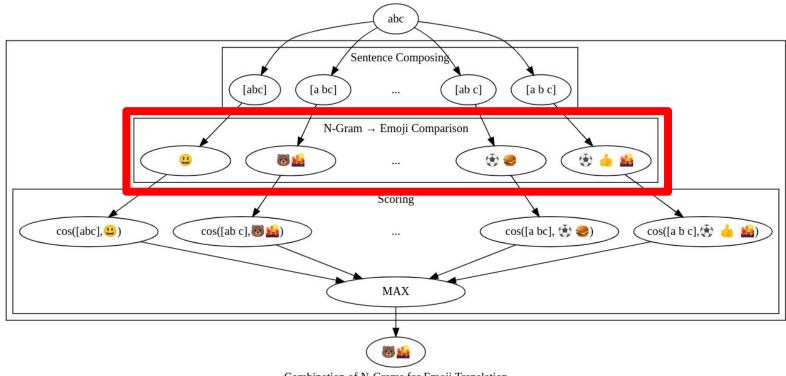
Combination of N-Grams for Emoji Translation

Sentence Compositions

- An <u>n-gram</u> is a variable length sequence of contiguous words, normally in the context of a larger phrase or sentence.
 - A sentence can be represented by a sequence of n-grams
 - **Ex:** The sentence "The dog bit me very hard" has the n-grams:
 - "The dog bit", "me", "very hard"
- We will refer to a sequence of n-grams as the **n-gram sequence**, and an individual n-gram in the sequence as an **n-gram**
- The simplest way to partition a sentence is to do so exhaustively
 - **Ex:** For the sentence "The dog bit me very hard" we check all sequences of n-grams:

• Assumption: there must exist some optimal n-gram sequence that generates the best summary

High-Level Algorithm Architecture

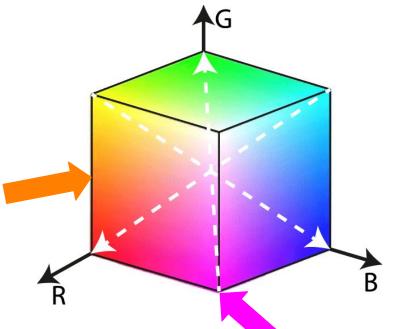


N-Gram→ Emoji Comparison

- Need a way to translate an n-gram (eg. "the dog") to an emoji (eg. 🐕) that is **not** just a one-to-one mapping from word to emoji
- What is an emoji?
 - Just a mapping over a description:
 - $\Re \rightarrow Dog, Puppy, Beagle$
 - \bigcirc \rightarrow Earth, Home, North and South America

Embeddings Explained using Colors

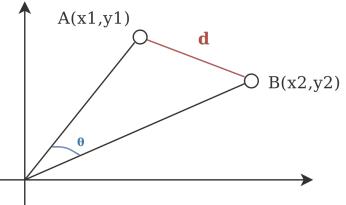
- Colors can be mapped into three-dimensional space using a vector of 3 numbers representing red, green, and blue
- Colors as specific points
 - $\circ \quad \text{Purple} \to [1, 0, 1]$
 - $\circ \quad \text{Orange} \rightarrow [1, 0.5, 0]$
- Adding colors together
 - Red + Blue = Purple
 - $\circ \quad [1, 0, 0] + [0, 0, 1] = [1, 0, 1]$



11

Embeddings Explained using Colors Continued...

- We can also use this idea to compare points in the color space
- Similarity Metrics
 - <u>Euclidean Distance</u> is the line distance between two points (d)
 - <u>Cosine Difference</u> is 1 the cosine of the measure of the angle from the origin between two points (Θ)
- Determining color difference
 - cos(Purple, Orange) = 0.04
 - cos(Red, Blue) = 1
- Closest Vectors (Vectors with lowest difference)
 - o closest(Red) = {Scarlet, Lipstick Red, ...}



N-Gram→ Emoji Comparison Continued...

- Sent2Vec
 - Translates a sentence, phrase, or word into a 700-long vector with elements from -1 1
 - Embeds the semantic meaning of the sentence into a machine readable and representative format

```
sent1 = "I have completed the homework"
s2v.embed_sentence(sent1)
[-1.48401037e-01 2.86369592e-01 -3.84726822e-02 -2.70754427e-01
-2.85093516e-01 2.10888043e-01 -1.31084099e-01 -1.06972098e-01
-7.71741331e-01 -2.98576862e-01 5.25636554e-01 5.20731509e-03
-1.16157994e-01 5.41290402e-01 -1.70695543e-01 -2.00217500e-01
-2.27179080e-01 -6.52487054e-02 6.75283015e-01 -2.49963105e-02
3.56599867e-01 -1.71164840e-01 3.64689410e-01 2.17651650e-02
1.07673749e-01 3.45551342e-01 2.88191617e-01 3.98644842e-02
1.64047748e-01 1.60539448e-01 -2.62602031e-01 5.31935453e-01
2.14340508e-01 -4.34283257e-01 1.40293509e-01 4.07240801e-02
4.79401052e-01 1.69155195e-01 -1.64602101e-02 -7.75851190e-01
-4.03030366e-01 2.18428180e-01 3.06886464e-01 -2.29964495e-01
```

N-Gram→ Emoji Comparison Continued...

- Sent2Vec
 - Translates a sentence, phrase, or word into a 700-long vector with elements from -1 1
 - Embeds the semantic meaning of the sentence into a machine readable and representative format

```
sent1 = "I have completed the homework"
sent2 = "He did finish the homework"
cosine(s2v.embed_sentence(sent1), s2v.embed_sentence(sent2))
```

0.63223

```
sent1 = "I have completed the homework"
sent2 = "The quick brown fox jumped over the lazy dog"
cosine(s2v.embed_sentence(sent1), s2v.embed_sentence(sent2))
```

```
0.16078
```

N-Gram→ Emoji Comparison Continued...

• To find the closest emoji to a vector the following function is executed:

 Input: Sentence

 Input Embedding ← Embed(Sentence)

 for Emoji, Description in Dataset do

 | Emoji Embedding ← Embed(Description)

 | Similarity ← cosine(Emoji Embedding, Input Embedding)

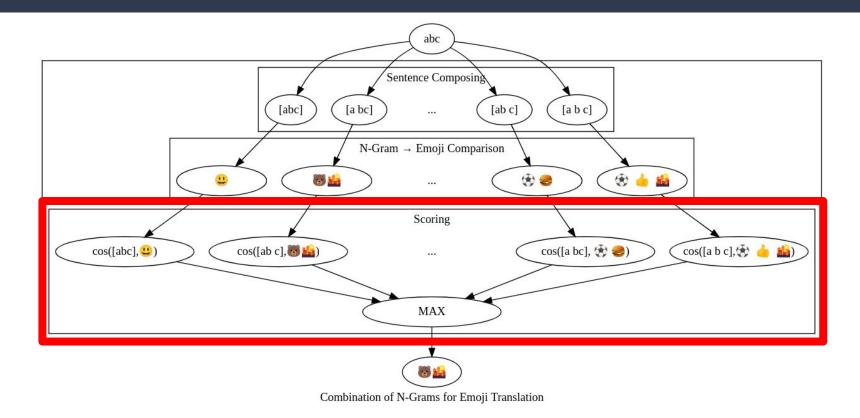
 end

 return Emoji, Similarity, Description with highest Similarity

• We can now query our dataset like this:

ClosestEmoji(considerate) >>> (\heartsuit , 0.508..., respectful)

High-Level Algorithm Architecture



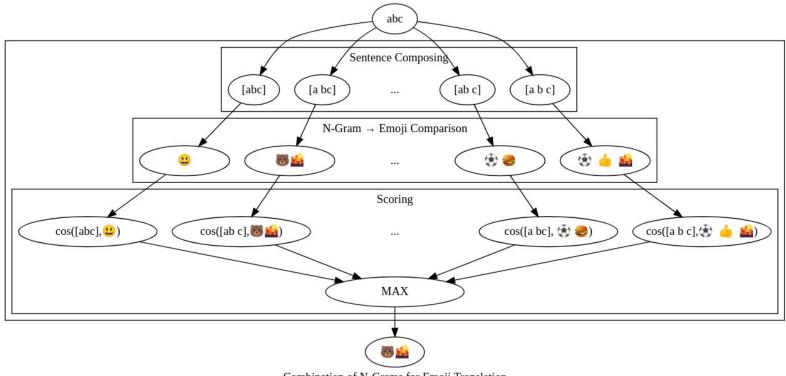
Translation Scoring

- We score a sentence based on the sum of its parts. Meaning that the sentence's score as a whole is an average of the cosine similarity of the n-gram → emoji pairs that make up that summary.
- 🐩 🎽 💨
 - $\circ \quad \text{N-grams} \ {\rightarrow} \text{``the dog'' ``runs'' ``fast''}$
 - $\circ \quad \text{Emoji-grams} \rightarrow \text{`'dog'' ''run'' ''fast''}$
 - $\circ \quad \ \ \text{Cosine Similarity} \rightarrow 0.96, 1.0, 1.0$
 - \circ Average Cosine Similarity \rightarrow 0.9844
 - <u>, Р | </u>
 - \circ N-grams \rightarrow "i think that this" "computer" "has a virus"
 - $\circ \quad \text{Emoji-grams} \rightarrow \text{``think'' ``computer'' ``virus''}$
 - $\circ \quad \text{Cosine Similarity} \rightarrow 0.52, 1.0, 0.79$
 - $\circ \quad \text{Average Cosine Similarity} \rightarrow 0.77$

Summary Generation

Input: English Sentence, S $Sequences \leftarrow Exhaustive(S)$ for N-Gram Sequence in Sequences do for N-Gram in N-Gram Sequence do Add closest emoji to summary end Score summary end return Summary with highest score

Summary Generation



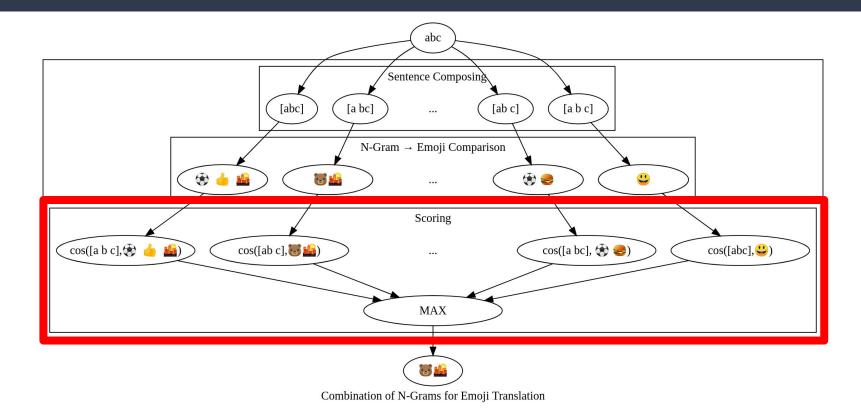
Drawbacks with this implementation

- Computationally expensive
 - Every word doubles the number of compositions to look at
 - 2ⁿ⁻¹ total compositions to consider, where n is the sentence length
- Words are variably impactful
 - 'The', 'a', 'but', and other similar words
- Little to no context
 - 0 🐶 🌭 🐶
 - "A dog eats a treat while another dog watches."
 - "A dog steals the food of the dog."
 - "A dog shares his snack with a dog."

Addressing the issues

- Computationally expensive
 - Don't look at every possible combination
 - The natural parts of speech offer an intuitive approach to grouping a sentence
- Variable importance of words
 - Maybe if we could weigh the relative importance of words, we could more fairly score...?
 - Inspiration from the automatic text summarization techniques that we considered years ago
- Context
 - More important for human translators
 - Sentiment analysis the feeling of a sentence as an initial attempt

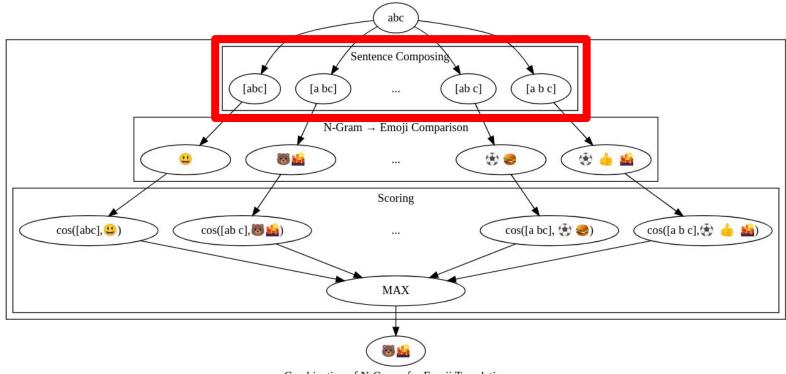
High-Level Algorithm Architecture



Tf-idf to high level considerations go here

Made a mistake and need to fix it. Fixing other end first before I write.

Algorithm Improvements

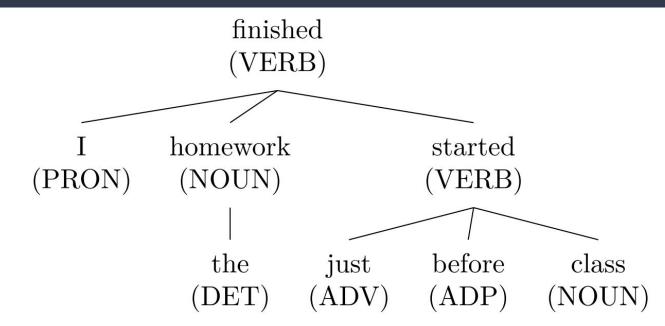


Combination of N-Grams for Emoji Translation

Dependency Tree Segment Generation

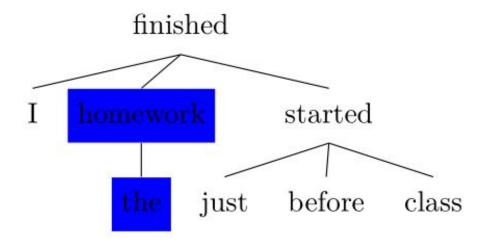
- Exhaustive splitting is
 - Naive
 - Computationally expensive
 - Suffers from reward hacking
- Sentences can be turned into a tree-like structure based on the syntactic dependencies.
- Given that tree we can collapse it down to produce the n-grams from all the remaining nodes:
 - 1. If there is a node-to-node relationship with only one child we combine them
 - 2. If there are two or more leafs on the same level we combine them

Dependency Trees

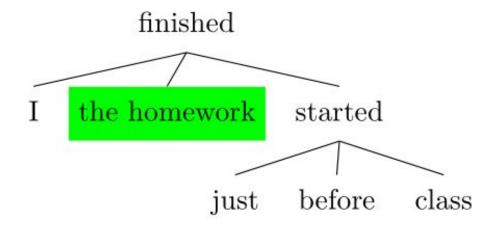


"I finished the homework just before the class started."

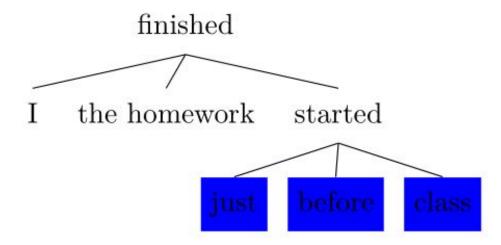
Child Collapse



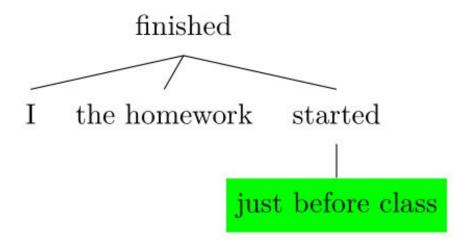
Child Collapse Continued...



Neighbor Collapse...



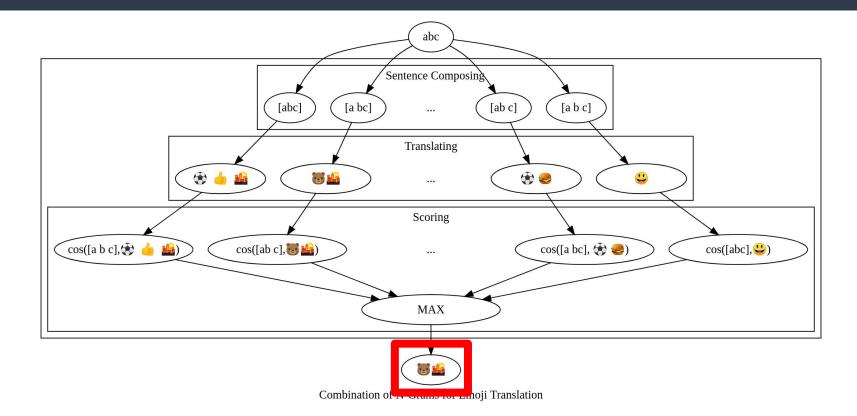
Neighbor Collapse Continued...



Dependency Tree Segment Generation Continued...

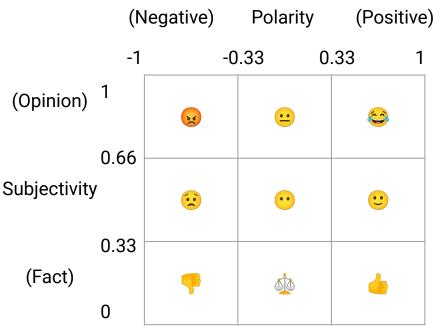
Sentence 1. The student drew a snowflake on the chalk board				
Exhaustive	The student drewasnowflakeonthe chalk board			
Tree Collapse	The studentdrewa snowflakethe chalkon board			
Sentence 2. I finished the homework just before class started				
Exhaustive	I finished the homework just before class started			
Tree Collapse	I finished the homework just before class started			
Sentence 3. Can you calculate the number of giraffes that have ever existed?				
Exhaustive	can you calculate the number of giraffe that have ever existed			
Tree Collapse	can you calculate number that have ever of giraffes existed 31			

High-Level Algorithm Architecture



Sentiment

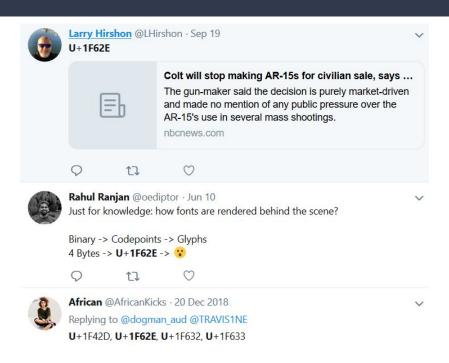
- Initially, just a table
 - Score a sentence using TextBlob
 - Pull an emoji from a table
- Iteration 2:
 - Use twitter's API to find tweets containing each emoji
 - Run each tweet through TextBlob
 - Find the mean and standard deviation of each emoji
 - Run the target sentence through TextBlob
 - Find the nearest emoji



Issues

Dataset

- Size (Twitter API rate limit)
- Query structure issues
 - Searching for "U+1F62E" (:)
 - Not always in tweet
- Can only search so far back
 - results in many Hong-Kong related tweets



Issues Continued

- Preprocessing is a different beast
 - "Current mood: "

>>> test()

• Spelling, punctuation

Im so focused that it might come off as selfish, but oh well... I apologize in advance.

0 5

Time Revolution HK @ @TimeRevolution9 · 3m waiting... **@** follow everyone pic.twitter.com/41DbZcwk28

0 2

() 131

War i'm c

Warren Camangyan @WCamangyan · 5m i'm okay e pic.twitter.com/iP1fFqKQGT

1] 36

1] 1

TextBlob conclusion

- More data
- Better preprocessing
- Maybe categorical data analysis combined with with a better dataset (Kaggle)

```
for keys,values in tweetDict.items():
    print(keys, values)
```

Testing

- No easy quantitative way to score translations
 - BLEU score requires large dataset
- Human in the loop testing
 - Large variance in small sample size of responses
 - Large variance in what our emoji sentences can represent
- Stuck with judging translations ourselves

Results (Exhaustive Splitting)

Input Sentence	Output Emojis	Score
The dog runs fast	🐩 볼 💨	0.984
The child was in love with the cat	👶 😚 🐾	0.824
They are playing christmas music from the bell tower	🞴 🌲 🎻 🕐 🏫	0.893
I think that this computer has a virus		0.769
I have to wear my headphones to run in the race	≈∩≚ ≈	0.960
The company Apple makes both cell phones and computers	🍏 🖩 💾	0.903

Results (Smart Dependency Tree Splitting)

Input Sentence	Output Emojis	Score
The dog runs fast	불 🤯	0.663
The child was in love with the cat	👶 🚯 🐾	0.629
They are playing christmas music from the bell tower	🚯 🎴 🌲 🎎	0.706
I think that this computer has a virus	♫‱	0.822
I have to wear my headphones to run in the race	♀ ▲ ● ■ ∩ ≚	0.668
The company Apple makes both cell phones and computers	🍏 🚯 📞 🗐	0.590

Conclusion

- We presented a novel method of translation from English to emoji
- Translates some sentences well, but needs improvement in other areas
- A decent (as far as we can tell) first approach to this problem

Future Work

• Improved dataset

- The dataset is the main influence on the "readability" of the generated summaries.
- The dataset we have is aimed at word vectorization rather than sentence vectorization
- A larger dataset could utilize deep learning techniques
- Each n-gram is currently independent of every other n-gram in the sequence
 - By checking before and ahead and using that to influence the decision it may lead to better results. This is a proven technique used by Recurrent Neural Networks.
- Improve Testing Metrics
 - Translate emojis back into a sentence and calculate distance from the input sentence
- One n-gram can have multiple emojis all with the same similarity. We need some way of determining the closest "closest" emoji.
 - Maybe by considering the emoji's other keywords as well
 - Consider part-of-speech tagging emoji descriptions

Demo

emoji.alexday.me

Questions?

TF-IDF

- A way to score the relative importance of a word (term) in a given sentence (document)
- Two parts
 - TF -> Term Frequency: How often a word shows up in the document
 - Motivation: The more often a word shows up, the more important it is to the document
 - Number of times a word shows up in the document
 - IDF -> Inverse Document Frequency: How often a word shows up in all of the documents
 - Motivation: The more things a word shows up in, the less important it is to a single document
 - log(|corpus|/term)
- TF-IDF(term, document, corpus) = TF(term, document) x IDF(term, corpus)

Estimating n-grams with TF-IDF

- TF-IDF typically considers individual words
- Sometimes trained on bigrams or trigrams, but not often much more than that
 - "New York" is common and meaningful, but 2 arbitrary words often aren't
- If we can have a score for arbitrary n-grams, then we can consider weighted averages
 - Gensim is terrific for handling larger datasets, but we cannot consider anything other than unigrams without jumping through some hoops
 - Estimate n-grams out of the constituent unigrams

$$\frac{\sum_{i=1}^n w_i x_i}{\sum_{j=1}^n w_j}$$

Steps

- Find TF-IDF scores of each term in the document to translate
- When looking for the score of a larger n-gram, approximate it
 - Individual document frequencies can be multiplied together to get an estimation of how often the words occur together
 - Can estimate how often the words occur in the given order by using the input sentence as an estimation for average sentence length
- Score each composition by multiplying the tf-idf weight of each n-gram with the uncertainty score calculated by cosine difference

[['the', 0.087], ['runs', 0.341], ['fast', 0.268], ['dog', 0.304]]
[['the dog', 0.429], ['runs', 0.316], ['fast', 0.255]]

High level considerations

- Consider a bigram
 - Pool of 'words' to select from is much larger would expect frequency of [AB] to be smaller overall
 - Document frequency should be way down
 - Bigrams should score better
- Hugely variable based on training corpus
 - Some were sentences and others were full blown books
 - Assumptions made on word frequencies
 - "The dog runs fast"
 - I looked at datasets of SMS spam/ham, Jeopardy! questions, Canadian Parliament transcriptions, and they heavily impacted the weights.